Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220357, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899021

RESUMO

Artificial light at night (ALAN) threatens natural ecosystems globally. While ALAN research is increasing, little is known about how ALAN affects plants and interactions with other organisms. We explored the effects of ALAN on plant defence and plant-insect interactions using barley (Hordeum vulgare) and the English grain aphid (Sitobion avenae). Plants were exposed to 'full' or 'part' nights of 15-20 lux ALAN, or no ALAN 'control' nights, to test the effects of ALAN on plant growth and defence. Although plant growth was only minimally affected by ALAN, aphid colony growth and aphid maturation were reduced significantly by ALAN treatments. Importantly, we found strong differences between full-night and part-night ALAN treatments. Contrary to our expectations, part ALAN had stronger negative effects on aphid colony growth than full ALAN. Defence-associated gene expression was affected in some cases by ALAN, but also positively correlated with aphid colony size, suggesting that the effects of ALAN on plant defences are indirect, and regulated via direct disruption of aphid colonies rather than via ALAN-induced upregulation of defences. Mitigating ecological side effects of ALAN is a complex problem, as reducing exposure to ALAN increased its negative impact on insect herbivores. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Afídeos , Animais , Poluição Luminosa , Ecossistema , Plantas , Herbivoria , Luz
2.
Sci Rep ; 13(1): 13530, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598245

RESUMO

In the northern forelands of the Alps, farmers report an increase of Jacobaea aquatica in production grasslands. Due to its toxicity, the species affects grassland productivity and calls for costly control measures. We are investigating the extent to which management practices or climatic factors are responsible for the increase of the species and how the situation will change due to climate change. We tested for effects of management intensity, fertilization, agri-environmental measures, and soil disturbance, and modeled the occurrence of the species under rcp4.5 and rcp8.5 scenarios. The main determinants of the occurrence of the species are soil type and summer rainfall. A high risk is associated with wet soils and > 400 mm of rain between June and August; an influence of the management-related factors could not be detected. Under the climate-change scenarios, the overall distribution decreases and shifts to the wetter alpine regions. Thus, the current increase is rather a shift in the occurrence of the species due to the altered precipitation situation. Under future climatic conditions, the species will decline and retreat to higher regions in the Alps. This will decrease the risk of forage contamination for production grassland in the lowlands.


Assuntos
Síndrome Linfoproliferativa Autoimune , Plantas Tóxicas , Pradaria , Chuva , Solo
3.
J Environ Manage ; 344: 118512, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384992

RESUMO

Poor regeneration of natural vegetation is a major factor contributing to the degradation of tropical coral islands. Soil seed banks (SSB) are important for maintaining the resilience of plant communities. However, the community characteristics and spatial distribution of SSBs and the controlling factors along human disturbance on coral islands are unclear. To fill this gap, we measured the community structure and spatial distributions of forest SSBs on three coral islands in the South China Sea, with varying degrees of human disturbance. The results showed that strong human disturbance increased the diversity, richness, and density of SSBs, as well as increased the richness of invasive species. With increased human disturbance, the heterogeneity pattern of SSBs spatial distribution changed from difference between forest east and west to forest center and edge. The similarity between the SSBs and above-ground vegetation also increased, and the distribution of invasive species extended from the edge to the central area of the forests, demonstrating that human disturbance limited the outward dispersal of seeds of resident species but increased the inward dispersal of seeds of invasive species. Interaction between soil properties, plant characteristics, and human disturbance explained 23-45% of the spatial variation of forest SSBs on the coral islands. However, human disturbance reduced the correlations of plant communities and spatial distribution of SSBs with soil factors (i.e., available phosphorus and total nitrogen) and increased the correlations of the community characteristics of SSB with landscape heterogeneity index, road distance, and shrub and litter cover. Resident seed dispersal on tropical coral islands might be enhanced by reducing building height, constructing buildings in down-wind locations, and preserving corridors that support animal movement among forest fragments.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Solo/química , Banco de Sementes , Efeitos Antropogênicos , Ilhas , Florestas , Plantas , Sementes , Espécies Introduzidas
4.
Oecologia ; 201(3): 813-825, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36869183

RESUMO

Arthropods respond to vegetation in multiple ways since plants provide habitat and food resources and indicate local abiotic conditions. However, the relative importance of these factors for arthropod assemblages is less well understood. We aimed to disentangle the effects of plant species composition and environmental drivers on arthropod taxonomic composition and to assess which aspects of vegetation contribute to the relationships between plant and arthropod assemblages. In a multi-scale field study in Southern Germany, we sampled vascular plants and terrestrial arthropods in typical habitats of temperate landscapes. We compared independent and shared effects of vegetation and abiotic predictors on arthropod composition distinguishing between four large orders (Lepidoptera, Coleoptera, Hymenoptera, Diptera), and five functional groups (herbivores, pollinators, predators, parasitoids, detritivores). Across all investigated groups, plant species composition explained the major fraction of variation in arthropod composition, while land-cover composition was another important predictor. Moreover, the local habitat conditions depicted by the indicator values of the plant communities were more important for arthropod composition than trophic relationships between certain plant and arthropod species. Among trophic groups, predators showed the strongest response to plant species composition, while responses of herbivores and pollinators were stronger than those of parasitoids and detritivores. Our results highlight the relevance of plant community composition for terrestrial arthropod assemblages across multiple taxa and trophic levels and emphasize the value of plants as a proxy for characterizing habitat conditions that are hardly accessible to direct environmental measurements.


Assuntos
Artrópodes , Besouros , Animais , Artrópodes/fisiologia , Biodiversidade , Ecossistema , Herbivoria , Plantas
5.
PLoS One ; 18(2): e0275044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735650

RESUMO

Urban grasslands are crucial for biodiversity and ecosystem services in cities, while little is known about their multifunctionality under climate change. Thus, we investigated the effects of simulated climate change, i.e., increased [CO2] and temperature, and reduced precipitation, on individual functions and overall multifunctionality in mesocosm grasslands sown with forbs and grasses in four different proportions aiming at mimicking road verge grassland patches. Climate change scenarios RCP2.6 (control) and RCP8.5 (worst-case) were simulated in walk-in climate chambers of an ecotron facility, and watering was manipulated for normal vs. reduced precipitation. We measured eight indicator variables of ecosystem functions based on below- and aboveground characteristics. The young grassland communities responded to higher [CO2] and warmer conditions with increased vegetation cover, height, flower production, and soil respiration. Lower precipitation affected carbon cycling in the ecosystem by reducing biomass production and soil respiration. In turn, the water regulation capacity of the grasslands depended on precipitation interacting with climate change scenario, given the enhanced water efficiency resulting from increased [CO2] under RCP8.5. Multifunctionality was negatively affected by reduced precipitation, especially under RCP2.6. Trade-offs arose among single functions that performed best in either grass- or forb-dominated grasslands. Grasslands with an even ratio of plant functional types coped better with climate change and thus are good options for increasing the benefits of urban green infrastructure. Overall, the study provides experimental evidence of the effects of climate change on the functionality of urban ecosystems. Designing the composition of urban grasslands based on ecological theory may increase their resilience to global change.


Assuntos
Mudança Climática , Ecossistema , Pradaria , Dióxido de Carbono , Poaceae , Água , Solo/química
6.
Ecol Lett ; 25(10): 2177-2188, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953880

RESUMO

Why sex has evolved and is maintained is an open question in evolutionary biology. The Red Queen hypothesis predicts that host lineages subjected to more intense parasite pressure should invest more in sexual reproduction to continuously create novel defences against their rapidly evolving natural enemies. In this comparative study across the angiosperms, we show that hermaphrodite plant species associated with higher species richness of insect herbivores evolved flowers with higher biomass allocation towards the male sex, an indication of their greater outcrossing effort. This pattern remained robust after controlling for key vegetative, reproductive and biogeographical traits, suggesting that long-term herbivory pressure is a key factor driving the selfing-outcrossing gradient of higher plants. Although flower evolution is frequently associated with mutualistic pollinators, our findings support the Red Queen hypothesis and suggest that insect herbivores drive the sexual strategies of flowering plants and their genetic diversity.


Assuntos
Herbivoria , Magnoliopsida , Animais , Flores , Insetos , Polinização , Reprodução
7.
Oecologia ; 199(2): 407-417, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35711067

RESUMO

Higher temperatures can increase metabolic rates and carbon demands of invertebrate herbivores, which may shift leaf-chewing herbivory among plant functional groups differing in C:N (carbon:nitrogen) ratios. Biotic factors influencing herbivore species richness may modulate these temperature effects. Yet, systematic studies comparing leaf-chewing herbivory among plant functional groups in different habitats and landscapes along temperature gradients are lacking. This study was conducted on 80 plots covering large gradients of temperature, plant richness and land use in Bavaria, Germany. We investigated proportional leaf area loss by chewing invertebrates ('herbivory') in three plant functional groups on open herbaceous vegetation. As potential drivers, we considered local mean temperature (range 8.4-18.8 °C), multi-annual mean temperature (range 6.5-10.0 °C), local plant richness (species and family level, ranges 10-51 species, 5-25 families), adjacent habitat type (forest, grassland, arable field, settlement), proportion of grassland and landscape diversity (0.2-3 km scale). We observed differential responses of leaf-chewing herbivory among plant functional groups in response to plant richness (family level only) and habitat type, but not to grassland proportion, landscape diversity and temperature-except for multi-annual mean temperature influencing herbivory on grassland plots. Three-way interactions of plant functional group, temperature and predictors of plant richness or land use did not substantially impact herbivory. We conclude that abiotic and biotic factors can assert different effects on leaf-chewing herbivory among plant functional groups. At present, effects of plant richness and habitat type outweigh effects of temperature and landscape-scale land use on herbivory among legumes, forbs and grasses.


Assuntos
Herbivoria , Mastigação , Animais , Biodiversidade , Carbono , Ecossistema , Herbivoria/fisiologia , Humanos , Invertebrados/fisiologia , Plantas , Temperatura
8.
Sci Adv ; 8(18): eabm9359, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544641

RESUMO

Changes in climate and land use are major threats to pollinating insects, an essential functional group. Here, we unravel the largely unknown interactive effects of both threats on seven pollinator taxa using a multiscale space-for-time approach across large climate and land-use gradients in a temperate region. Pollinator community composition, regional gamma diversity, and community dissimilarity (beta diversity) of pollinator taxa were shaped by climate-land-use interactions, while local alpha diversity was solely explained by their additive effects. Pollinator diversity increased with reduced land-use intensity (forest < grassland < arable land < urban) and high flowering-plant diversity at different spatial scales, and higher temperatures homogenized pollinator communities across regions. Our study reveals declines in pollinator diversity with land-use intensity at multiple spatial scales and regional community homogenization in warmer and drier climates. Management options at several scales are highlighted to mitigate impacts of climate change on pollinators and their ecosystem services.


Assuntos
Ecossistema , Magnoliopsida , Animais , Biodiversidade , Mudança Climática , Florestas , Insetos
9.
PLoS One ; 17(4): e0264881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486623

RESUMO

Arthropod predators are important for ecosystem functioning by providing top-down regulation of insect herbivores. As predator communities and activity are influenced by biotic and abiotic factors on different spatial scales, the strength of top-down regulation ('arthropod predation') is also likely to vary. Understanding the combined effects of potential drivers on arthropod predation is urgently needed with regard to anthropogenic climate and land-use change. In a large-scale study, we recorded arthropod predation rates using artificial caterpillars on 113 plots of open herbaceous vegetation embedded in contrasting habitat types (forest, grassland, arable field, settlement) along climate and land-use gradients in Bavaria, Germany. As potential drivers we included habitat characteristics (habitat type, plant species richness, local mean temperature and mean relative humidity during artificial caterpillar exposure), landscape diversity (0.5-3.0-km, six scales), climate (multi-annual mean temperature, 'MAT') and interactive effects of habitat type with other drivers. We observed no substantial differences in arthropod predation rates between the studied habitat types, related to plant species richness and across the Bavarian-wide climatic gradient, but predation was limited when local mean temperatures were low and tended to decrease towards higher relative humidity. Arthropod predation rates increased towards more diverse landscapes at a 2-km scale. Interactive effects of habitat type with local weather conditions, plant species richness, landscape diversity and MAT were not observed. We conclude that landscape diversity favours high arthropod predation rates in open herbaceous vegetation independent of the dominant habitat in the vicinity. This finding may be harnessed to improve top-down control of herbivores, e.g. agricultural pests, but further research is needed for more specific recommendations on landscape management. The absence of MAT effects suggests that high predation rates may occur independent of moderate increases of MAT in the near future.


Assuntos
Artrópodes , Ecossistema , Agricultura , Animais , Plantas , Comportamento Predatório , Temperatura
10.
J Environ Manage ; 311: 114846, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35290956

RESUMO

Roadsides, in particular those being species-rich and of conservation value, are considered to improve landscape permeability by providing corridors among habitat patches and by facilitating species' dispersal. However, little is known about the potential connectivity offered by such high-value roadsides. Using circuit theory, we modelled connectivity provided by high-value roadsides in landscapes with low or high permeability in south-central Sweden, with 'permeability' being measured by the area of semi-natural grasslands. We modelled structural connectivity and, for habitat generalists and specialists, potential functional connectivity focusing on butterflies. We further assessed in which landscapes grassland connectivity is best enhanced through measures for expanding the area of high-value roadsides. Structural connectivity provided by high-value roadsides resulted in similar patterns to those of a functional approach, in which we modelled habitat generalists. In landscapes with low permeability, all target species showed higher movements within compared to between grasslands using high-value roadsides. In landscapes with high permeability, grassland generalists and specialists showed the same patterns, whereas for habitat generalists, connectivity provided by high-value roadsides and grasslands was similar. Increasing the ratio of high-value roadsides can thus enhance structural and functional connectivity in landscapes with low permeability. In contrast, in landscapes with high permeability, roadsides only supported movement of specialised species. Continuous segments of high-value roadsides are most efficient to increase connectivity for specialists, whereas generalists can utilize also short segments of high-value roadsides acting as stepping-stones. Thus, land management should focus on the preservation and restoration of existing semi-natural grasslands. Management for enhancing grassland connectivity through high-value roadsides should aim at maintaining and creating high-value roadside vegetation, preferably in long continuous segments, especially in landscapes with low permeability.

11.
Sci Total Environ ; 812: 151478, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742951

RESUMO

Roadsides can harbour remarkable biodiversity; thus, they are increasingly considered as habitats with potential for conservation value. To improve construction and management of roadside habitats with positive effects on biodiversity, we require a quantitative understanding of important influential factors that drive both positive and negative effects of roads. We conducted meta-analyses to assess road effects on bird communities. We specifically tested how the relationship between roads and bird richness varies when considering road type, habitat characteristics and feeding guild association. Overall, bird richness was similar in road habitats compared to non-road habitats, however, the two apparently differ in species composition. Bird richness was lowered by road presence in areas with denser tree cover but did not differ according to road type. Richness differences between habitats with and without roads further depended on primary diet of species, and richness of omnivores was positively affected by road presence. We conclude that impacts of roads on bird richness are highly context-dependent, and planners should carefully evaluate road habitats on a case by case basis. This emphasizes the need for further studies that explicitly test for differences in species composition and abundance, to disentangle contexts where a road will negatively affect bird communities, and where it will not.


Assuntos
Aves , Conservação dos Recursos Naturais , Animais , Biodiversidade , Ecossistema , Árvores
12.
Plants (Basel) ; 10(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920882

RESUMO

Grassland biodiversity is declining due to climatic change, land-use intensification, and establishment of invasive plant species. Excluding or suppressing invasive species is a challenge for grassland management. An example is Jacobaea aquatica, an invasive native plant in wet grasslands of Central Europe, that is causing problems to farmers by being poisonous, overabundant, and fast spreading. This study aimed at testing designed grassland communities in a greenhouse experiment, to determine key drivers of initial J. aquatica suppression, thus dismissing the use of pesticides. We used two base communities (mesic and wet grasslands) with three plant traits (plant height, leaf area, seed mass), that were constrained and diversified based on the invader traits. Native biomass, community-weighted mean trait values, and phylogenetic diversity (PD) were used as explanatory variables to understand variation in invasive biomass. The diversified traits leaf area and seed mass, PD, and native biomass significantly affected the invader. High native biomass permanently suppressed the invader, while functional traits needed time to develop effects; PD effects were significant at the beginning of the experiment but disappeared over time. Due to complexity and temporal effects, community weighted mean traits proved to be moderately successful for increasing invasion resistance of designed grassland communities.

13.
Proc Natl Acad Sci U S A ; 117(20): 10921-10926, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366661

RESUMO

Flower biomass varies widely across the angiosperms. Each plant species invests a given amount of biomass to construct its sex organs. A comparative understanding of how this limited resource is partitioned among primary (male and female structures) and secondary (petals and sepals) sexual organs on hermaphrodite species can shed light on general evolutionary processes behind flower evolution. Here, we use allometries relating different flower biomass components across species to test the existence of broad allocation patterns across the angiosperms. Based on a global dataset with flower biomass spanning five orders of magnitude, we show that heavier angiosperm flowers tend to be male-biased and invest strongly in petals to promote pollen export, while lighter flowers tend to be female-biased and invest more in sepals to insure their own seed set. This result demonstrates that larger flowers are not simple carbon copies of small ones, indicating that sexual selection via male-male competition is an important driver of flower biomass evolution and sex allocation strategies across angiosperms.


Assuntos
Evolução Biológica , Flores/fisiologia , Magnoliopsida/fisiologia , Biomassa , Gentiana , Lepidium , Nymphaea , Orchidaceae , Pólen , Polinização , Sementes , Seleção Genética , Especificidade da Espécie
14.
Plants (Basel) ; 9(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906387

RESUMO

Ecosystem properties can be positively affected by plant functional diversity and compromised by invasive alien plants. We performed a community assembly study in mesocosms manipulating different functional diversity levels for native grassland plants (communities composed by 1, 2 or 3 functional groups) to test if functional dispersion could constrain the impacts of an invasive alien plant (Solidago gigantea) on soil fertility and plant community biomass via complementarity. Response variables were soil nutrients, soil water nutrients and aboveground biomass. We applied linear mixed-effects models to assess the effects of functional diversity and S. gigantea on plant biomass, soil and soil water nutrients. A structural equation model was used to evaluate if functional diversity and invasive plants affect soil fertility directly or indirectly via plant biomass and soil pH. Invaded communities had greater total biomass but less native plant biomass than uninvaded ones. While functional diversity increased nutrient availability in the soil solution of uninvaded communities, invasive plants reduced nutrient concentration in invaded soils. Functional diversity indirectly affected soil water but not soil nutrients via plant biomass, whereas the invader reduced native plant biomass and disrupted the effects of diversity on nutrients. Moreover, invasive plants reduced soil pH and compromised phosphate uptake by plants, which can contribute to higher phosphate availability and its possible accumulation in invaded soils. We found little evidence for functional diversity to constrain invasion impacts on nutrients and plant biomass. Restoration of such systems should consider other plant community features than plant trait diversity to reduce establishment of invasive plants.

15.
PLoS One ; 14(4): e0215645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017976

RESUMO

In peatland restoration we often lack an information whether re-established ecosystems are functionally similar to non-degraded ones. We re-analysed the long-term outcomes of restoration on vegetation and plant functional traits in 38 European fens restored by rewetting (18 sites) and topsoil removal (20 sites). We used traits related to nutrient acquisition strategies, competitiveness, seed traits, and used single- and multi-trait metrics. A separate set of vegetation records from near-natural fens with diverse plant communities was used to generate reference values to aid the comparisons. We found that both restoration methods enhanced the similarity of species composition to non-degraded systems but trait analysis revealed differences between the two approaches. Traits linked to nutrient acquisition strategies indicated that topsoil removal was more effective than rewetting. After topsoil removal competitive species in plant communities had decreased, while stress-tolerant species had increased. A substantial reduction in nutrient availability ruled out the effect of initial disturbance. An ability to survive and grow in anoxic conditions was enhanced after restoration, but the reference values were not achieved. Rewetting was more effective than topsoil removal in restricting variation in traits values permitted in re-developing vegetation. We found no indication of a shift towards reference in seed traits, which suggested that dispersal constraint and colonization deficit can be a widespread phenomena. Two functional diversity indices: functional richness and functional dispersion showed response to restoration and shifted values towards reference mires and away from the degraded systems. We concluded that targeting only one type of environmental stressor does not lead to a recovery of fens, as it provides insufficient level of stress to restore a functional ecosystem. In general, restoration efforts do not ensure the re-establishment and long-term persistence of fens. Restoration efforts result in recovery of fen ecosystems, confirmed with our functional trait analysis, although more rigid actions are needed for restoring fully functional mires, by achieving high and constant levels of anoxia and nutrient stresses.


Assuntos
Conservação dos Recursos Naturais/métodos , Fenômenos Fisiológicos Vegetais , Áreas Alagadas , Biodiversidade , Ecossistema , Europa (Continente) , Desenvolvimento Vegetal , Solo , Estresse Fisiológico
16.
Appl Plant Sci ; 5(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28529837

RESUMO

PREMISE OF THE STUDY: Polymorphic microsatellite loci were developed and used to genotype individuals of Herbertia zebrina (Iridaceae) as a first step for assessment of intraspecific genetic diversity. METHODS AND RESULTS: Primer pairs for 47 markers were developed: 20 from a microsatellite-enriched library and 27 from a next-generation sequencing run using the Illumina MiSeq platform. Of those, 15 loci were considered successful, of which 12 were polymorphic and three were monomorphic. The primers were tested in 50 individuals from three populations of H. zebrina. Two to 14 alleles per locus were identified, and observed and expected heterozygosity were 0.00-0.95 and 0.18-0.89, respectively. Tests of cross-amplification to evaluate the applicability of these markers showed positive results in one congeneric species, H. darwinii, and in a phylogenetically closely related species, Calydorea crocoides. CONCLUSIONS: These microsatellite markers can be used for studies of genetic variation and genetic population structure, as well as to support conservation efforts.

17.
Ecol Evol ; 7(24): 10683-10689, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299248

RESUMO

One of the key questions in ecosystem restoration is the choice of the seed material for restoring plant communities. The most common strategy is to use local seed sources, based on the argument that many plants are locally adapted and thus local seed sources should provide the best restoration success. However, the evidence for local adaptation is inconsistent, and some of these inconsistencies may be due to different experimental approaches that have been used to test for local adaptation. We illustrate how conclusions about local adaptation depend on the experimental design and in particular on the method of data analysis. We used data from a multispecies reciprocal transplant experiment and analyzed them in three different ways: (1) comparing local vs. foreign plants within species and sites, corresponding to tests of the "local is best" paradigm in ecological restoration, (2) comparing sympatric vs. allopatric populations across sites but within species, and (3) comparing sympatric and allopatric populations across multiple species. These approaches reflect different experimental designs: While a local vs. foreign comparison can be done even in small experiments with a single species and site, the other two approaches require a reciprocal transplant experiment with one or multiple species, respectively. The three different analyses led to contrasting results. While the local/foreign approach indicated lack of local adaptation or even maladaptation, the more general sympatric/allopatric approach rather suggested local adaptation, and the most general cross-species sympatric/allopatric test provided significant evidence for local adaptation. The analyses demonstrate how the design of experiments and methods of data analysis impact conclusions on the presence or absence of local adaptation. While small-scale, single-species experiments may be useful for identifying the appropriate seed material for a specific restoration project, general patterns can only be detected in reciprocal transplant experiments with multiple species and sites.

18.
Ecol Evol ; 6(15): 5506-16, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27551400

RESUMO

During the past decades, agro-biodiversity has markedly declined and some species are close to extinction in large parts of Europe. Reintroduction of rare arable plant species in suitable habitats could counteract this negative trend. The study investigates optimal sowing rates of three endangered species (Legousia speculum-veneris (L.) Chaix, Consolida regalis Gray, and Lithospermum arvense L.), in terms of establishment success, seed production, and crop yield losses.A field experiment with partial additive design was performed in an organically managed winter rye stand with study species added in ten sowing rates of 5-10,000 seeds m(-2). They were sown as a single species or as a three-species mixture (pure vs. mixed sowing) and with vs. without removal of spontaneous weeds. Winter rye was sown at a fixed rate of 350 grains m(-2). Performance of the study species was assessed as plant establishment and seed production. Crop response was determined as grain yield.Plant numbers and seed production were significantly affected by the sowing rate, but not by sowing type (pure vs. mixed sowing of the three study species), and weed removal. All rare arable plant species established and reproduced at sowing rates >25 seeds m(-2), with best performance of L. speculum-veneris. Negative density effects occurred to some extent for plant establishment and more markedly for seed production.The impact of the three study species on crop yield followed sigmoidal functions. Depending on the species, a yield loss of 10% occurred at >100 seeds m(-2). Synthesis and applications: The study shows that reintroduction of rare arable plants by seed transfer is a suitable method to establish them on extensively managed fields, for example, in organic farms with low nutrient level and without mechanical weed control. Sowing rates of 100 seeds m(-2) for C. regalis and L. arvense, and 50 seeds m(-2) for L. speculum-veneris are recommended, to achieve successful establishment with negligible crop yield losses.

19.
Ecol Evol ; 6(12): 4160-5, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27516871

RESUMO

With ongoing climate change, many plant species may not be able to adapt rapidly enough, and some conservation experts are therefore considering to translocate warm-adapted ecotypes to mitigate effects of climate warming. Although this strategy, called assisted migration, is intuitively plausible, most of the support comes from models, whereas experimental evidence is so far scarce. Here we present data on multiple ecotypes of six grassland species, which we grew in four common gardens in Germany during a natural heat wave, with temperatures 1.4-2.0°C higher than the long-term means. In each garden we compared the performance of regional ecotypes with plants from a locality with long-term summer temperatures similar to what the plants experienced during the summer heat wave. We found no difference in performance between regional and warm-adapted plants in four of the six species. In two species, regional ecotypes even outperformed warm-adapted plants, despite elevated temperatures, which suggests that translocating warm-adapted ecotypes may not only lack the desired effect of increased performance but may even have negative consequences. Even if adaptation to climate plays a role, other factors involved in local adaptation, such as biotic interactions, may override it. Based on our results, we cannot advocate assisted migration as a universal tool to enhance the performance of local plant populations and communities during climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...